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1 Recap

We have the universal smooth hypersurface of degree d in Pn,

Y ⊂ Pn ×B

B ⊂ H0(Pn,OPn(d))

π

where B is the (Zariski open) smooth locus.

Note 1.1. We need to look at an open subset B, because otherwise the projection is not a
submersion hence we can’t use Ehresmann. The other way to think about this is that the
fiber over a regular point is a smooth submanifold.

Take B◦ an open subset of B parametrizing hypersurfaces without any non-trivial auto-
morphism, and take the quotient by the GL(n+ 1) action on H0(Pn,OPn(d)). This induces
a quotient on Y as well, and by abuse of notation we can this new family Y → B as well.
For any f ∈ B, this is a universal family of deformations for the hypersurface Yf = π−1(f).

Note 1.2. The idea of taking B◦ is probably to avoid dealing with GIT quotient, since we
are essentially removing the non-closed orbits.

This family gives us a period map:

P : B → Γ\D

Note 1.3. Infinitesimal Torelli says that this map is an immersion, while generic Torelli
says that it has degree 1 over the image.

We can look at this map in more details. Pick f ∈ B, and consider the lattice:

V = Hn−1(Yf ,Z)prim = ker
(
Hn−1(Yf ,Z)

ι∗−→ Hn+1(Pn,Z)
)

which can be thought of as ⌣ H (cup product with hyperplane class). Then we can think

of D as living inside
n−1∏
p=0

Gr(hp, VC) where hp = dimF pVC. We can locally identify the

differential:

dPf : TB,f →
⊕
p

Hom

(
F pVC⧸F p+1VC

, F
p−1VC⧸F pVC

)
TB,f →

⊕
p

Hom
(
Hp,n−1−p(Yf ,C)prim, Hp−1,n−p(Yf ,C)prim

)
u 7→

⊕
p

∇p,f (−, u)

where ∇p,f : F
pVC⧸F p+1VC

→ F p−1VC⧸F pVC
⊗ ΩB,f which comes from the Gauss-Manin

connection ∇ : V → V ⊗ ΩB where V = VC ⊗ OB.
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Definition 1.1. Let S =
⊕

k H
0(Pn,OPn(k)) and Jf be the Jacobian ideal generated by

partial derivatives ∂f
∂Xi

. The quotient ring is denoted Rf = S⧸Jf .

Hank showed last week that we can identify ∇p,f with the map given by multiplication

∇p,f : R
(n−p)d−n−1
f → Hom

(
Rd

f , R
(n−p+1)d−n−1
f

)
which gives (the map in each coordinate is given by multiplication)

dPf : Rd
f →

⊕
p

Hom
(
R

(n−p)d−n−1
f , R

(n−p+1)d−n−1
f

)

2 Infinitesimal Torelli

This theorem says that dPf is injective except for cubic surfaces in P3 (where there is
no Hodge theory since h2,0 = 0) and quadratic hypersurfaces (where the quotient B◦ by
GL(n+ 1) is just a point).

Note 2.1. The whole quadric hypersurface business has to do with all smooth quadratic
forms being projectively equivalent to X2

0 +X2
1 + ...+X2

n (the other ones have smaller ranks
hence not smooth).

Definition 2.1. Let S = C[X0, X1, ..., Xn] and {Gi}ni=0 be a sequence of homogeneous

polynomials Gi ∈ Sdi with no common zero. Let RG = S⧸⟨G0, G1, ..., Gn⟩ =
S⧸JG.

Note 2.2. V(JG) = ∅ since no common zero, and thus by weak Hilbert’s Nullstellensatz 1 ∈
JG thus Jk

G = Sk for k large enough (here we are saying they agree for high enough degree,

not talking about powers of ideals). Since JG and S agrees for large degree, RG = S⧸JG is
finite dimensional as a C−vector space hence RG is Artinian.

Theorem 2.2 (Macaulay). Let N =

(
n∑

i=0

di

)
−n−1. We have dimC R

N
G = 1, and for every

k ∈ Z we have a perfect pairing
Rk

G ×RN−k
G → RN

G

Corollary 2.3. We have the following:

1. Rk
G ̸= 0 ⇔ 0 ≤ k ≤ N .

2. For a, b ∈ Z with b ≥ 0 and a+ b ≤ N , the map given by product

µ : Ra
G → Hom(Rb

G, R
a+b
G )

is injective.

Note 2.3. RN
G is the socle of the ring. See this note which gives that a quotient local ring

of dimension 0 (Artinian) is gorenstein iff its socle is 1-dimensional. Localize, the maximal
ideal looks like (X0, ..., XN), then the socle is the biggest submodule of RG that is annihilated
by the maximal ideal hence is RN

G
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Once we have this corollary, dPf is injective iff it’s injective on at least one coordinate

hence we are done if we can find some p such that Rd
f → Hom

(
R

(n−p)d−n−1
f , R

(n−p+1)d−n−1
f

)
is injective. So we just need to find some p such that

(n− p)d− n− 1 ≥ 0, (n− p+ 1)d− n− 1 ≤ (d− 1)(n+ 1)− n− 1

and this is always possible except for the cubic surface and quadric hypersurfaces cases.

Proof of corollary 2.3. For the first part, clearly Rk
G = 0 for k < 0. Let k > N then

RN−k
G = 0 so Rk

G = 0. Now consider 0 ≤ k ≤ N , suppose that Rk
G = 0 then Rl

G = 0 for all
l ≥ k since any polynomial of degree l has a factor of degree k. This in turn implies that
N < k since dimRN

G = 1.
For the second part, consider p(X) ∈ kerµ ⊂ Ra

G then p(X)q(X) = 0 for all q(X) ∈ Rb
G.

Then for any r(X) ∈ RN−a−b
G , we have p(X)q(X)r(X) = 0 ∈ RN

G . On the other hand, any

h(X) ∈ RN−a
G can be factored as q(X)r(X) so the map RN−a

G

·p(X)−−−→ RN
G is zero. The perfect

pairing in Macaulay’s theorem gives

Rk
G ≃ Hom(RN−k, RN

G )

hence p(X) = 0. Thus µ is injective.

Note 2.4. The proof is essentially correct, but it’s very important that RG is artinian here.
In an artinian ring, primes are maximals hence the only irreducibles are linear factors. It’s
not true that we have factorization in C[X0, ..., Xn].

Proof of theorem 2.2. Let L =
⊕n

i=0 OPn(−di) then we get morphism

s : L

(
G0 G1 . . . Gn

)
−−−−−−−−−−−−−−→ OPn

then the dual s∨, given by the transpose of
(
G0 G1 . . . Gn

)
, can be thought of as a section

of L ∨. Furthermore, Jk
G = im s(k) : H0(Pn,L (k)) → H0(Pn,OPn(k)). Let Z = V(s∨) then

we have the Koszul resolution

0 →
n+1∧

L →
n∧

L → ... → L → OPn → OZ → 0

Now it’s clear, from the matrix form, that the zero locus of s∨ is V(JG) which is empty,
hence the complex

0 →
n+1∧

L →
n∧

L → ... → L → OPn → 0

is acyclic. Call this complex 0 → L 0 → L 1 → ... → L n → L n+1 → 0. Now we have the
following spectral sequence of filtered complex A•,

Ep,q
1 = RqF (Ap) ⇒ Rp+qF (A•)

In our case, let F = Γ and A• = L •(k) then the sequence becomes

Ep,q
1 = Hq(Pn,L p(k)) ⇒ Hp+q(Pn,L •(k))

Now L • is acyclic hence L •(k) is acyclic, hence trivial in the derived category. Thus
the hypercohomology is 0 (in general if A• is acyclic then RiF (A•) = H i(RF (A•)) = 0
by the same reasoning). On the other hand, L q(k) is a direct sum of line bundle so by
Hartshorne’s p. 209 (colimit commutes with cohomology), Ep,q

1 = 0 unless q = 0, n.
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Note 2.5.
∧n(M ⊕N) =

⊕
p+q=n

∧p(M)⊗
∧q(N).

E0,n
1 E1,n

1 E2,n
1 E3,n

1 . . . En,n
1 En+1,n

1

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

E0,0
1 E1,0

1 E2,0
1 E3,0

1 . . . En,0
1 En+1,0

1

E0,n
2 E1,n

2 E2,n
2 E3,n

2 . . . En,n
2 En+1,n

2

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

E0,0
2 E1,0

2 E2,0
2 E3,0

2 . . . En,0
2 En+1,0

2

hence the E3 page looks the same, just with different arrows. Now these arrows are still
either coming from 0 or pointing to 0 till the En+1 page, i.e., dr : E

p,q
r → Ep+r,q−r+1 is 0 for

2 ≤ r ≤ n hence E•,•
2 = E•,•

3 = ... = E•,•
n+1. The En+1 page looks like

E0,n
2 E1,n

2 E2,n
2 E3,n

2 . . . En,n
2 En+1,n

2

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

E0,0
2 E1,0

2 E2,0
2 E3,0

2 . . . En,0
2 En+1,0

2

dn+1
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thus the E∞ page looks like

ker dn+1 E1,n
2 E2,n

2 E3,n
2 . . . En,n

2 En+1,n
2

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

E0,0
2 E1,0

2 E2,0
2 E3,0

2 . . . En,0
2 Coker dn+1

and since this converges to hypercohomology which is 0, we have all these terms equal to 0.
Thus we have an isomorphism between E0,n

2 and En+1,0
2 . Now,

En+1,0
2 = Coker

(
En,0

1 → En+1,0
1

)
= Coker

(
H0(Pn,L (k))

s−→ H0(Pn,OPn(k))
)
= Sk/Jk

G = Rk
G

E0,n
2 = ker

(
E0,n

1 → E1,n
1

)
= ker

(
Hn

(
Pn,

n+1∧
L (k)

)
s−→ Hn

(
Pn,

n∧
L (k)

))
On the other hand, we have

n+1∧
L (k) =

n⊗
i=0

OPn(−di) = OPn

(
k −

n∑
i=0

di

)
since L =

⊕n
i=0 OPn(−di), and

n∧
L (k) = OPn(k)⊗

n∧
L

= OPn(k)⊗ L ∨ ⊗
n+1∧

L

= H om

(
L ,

n+1∧
L (k)

)

= H om

(
L ,OPn

(
k −

n∑
i=0

di

))

= L ∨

(
k −

n∑
i=0

di

)
Note 2.6. We need to check that L ∨ ⊗

∧n+1 L ≃
∧n L . This is only really true in this

case because ∧n+1L is a line bundle. In the normal case, suppose L has rank m, then a
comparison of dimension gives m ·

(
m

n+1

)
=
(
m
n

)
which has little chance of being true.

By Serre duality, we get(
E0,n

2

)∨
= Coker

(
H0

(
Pn,L

(
−n− 1− k +

n∑
i=0

di

))
→ H0

(
Pn,OPn

(
−n− 1− k +

n∑
i=0

di

)))
= R

−n−1−k+
∑

di
G = RN−k

G
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thus we get an isomorphism
dn+1 :

(
RN−k

G

)∨ → Rk
G

To conclude the perfect pairing we just need to check that the isomorphisms is compatible
with multiplications, i.e., the following diagram is commutative(

RN−k
G

)∨
Rk

G

(
RN−k−l

G

)∨
Rk+l

G

(·p)∨ ·p

dn+1

dn+1

which should follow from the fact that our section s was defined using multiplications.

3 Generic Torelli

For generic Torelli, we need the symmetriser lemma

Lemma 3.1. Let

T a,b =
{
ϕ ∈ Hom(Ra

G, R
b
G)
∣∣∣p(X) · ϕ(q(X)) = ϕ(p(X)) · q(X) ∀ p(X), q(X) ∈ Ra

G

}
If a+ b < N and maxi(di + b) ≤ N then we have

µ(Rb−a
G ) = T a,b ⊂ Hom(Ra

G, R
b
G)

Theorem 3.2 (Generic Torelli). The period map P : B → Γ\D has degree 1 over its image,
with the following possible exceptions:

1. d divides n+ 1;

2. d = 3, n = 3, i.e., cubic surfaces in P2;

3. d = 4, n ≡ 1 mod 4;

4. d = 6, n ≡ 2 mod 6.

Note 3.1. The statement for quadric hypersurfaces is trivial, since B is just a single point.

Voisin’s argument (in her book) on (Hn−1(Yf ,Z)prim, F •) ≃ (Hn−1(Yg,Z)prim, F •), with
very general f , inducing an isomorphism of variations of Hodge structures on neighborhoods
U ∋ f and V ∋ g is sketchy. See her 2020 paper on extending generic Torelli to see a
(seemingly) clearer argument.

Note 3.2. The argument in Voisin’s book is correct. The idea is that the period map is an
immersion, hence locally (on the target) it looks like a covering map. If 2 points f, g ∈ B
get mapped the same Hodge structure then we have 2 neighborhoods U ∋ f, V ∋ g mapping
isomorphically to the same neighborhood of the Hodge structure in D.
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The moral of the story is that such an isomorphism induces a commutative diagram

Rd
f

⊕
pHom

(
R

(n−p)d−n−1
f , R

(n−p+1)d−n−1
f

)

Rd
g

⊕
pHom

(
R

(n−p)d−n−1
g , R

(n−p+1)d−n−1
g

)
≃

dPf

dPg

≃

and we claim that such a diagram is enough to conclude Yf and Yg are isomorphic. Let k
be the smallest non-zero integer that can be written as k = (n− p)d− n− 1. Since d does
not divide n+ 1, k < d (since we can change the RHS by ±d). Then we have a diagram

Rd
f Hom

(
Rk

f , R
k+d
f

)

Rd
g Hom

(
Rk

g , R
k+d
g

)
ιd

µ

µ

φ7→ιk+d◦φ◦ι−1
k

By the symmetriser theorem, we can identify the image of Rd−k
f under multiplication with

T k,d
f =

{
ϕ ∈ Hom(Rk

f , R
d
f )
∣∣∣p(X) · ϕ(q(X)) = ϕ(p(X)) · q(X) ∀ p(X), q(X) ∈ Rk

f

}
Note that we have Rk

f ≃ Rk
g through ιk (since these are the same graded pieces of

isomorphic Hodge structures) and similarly with ιk+d. Consider α(X) ∈ Rd−k
f , define a

map ϕ ∈ Hom(Rk
g , R

d
g) as follows: for any Ag(X) ∈ Rk

g there is Af (X) ∈ Rk
f such that

ιk(Af (X)) = Ag(X), and we define ϕ(Ag(X)) = ιd(α(X) · Af (X)). In other words,

ϕ(Ag(X)) = ιd(α(X) · ι−1
k (Ag(X)))

which gives the C−linear structure of ϕ for free. Now let Bg(X) ∈ Rk
g , then the above

diagram gives

Bg(X) · ϕ(Ag(X)) = Bg(X) · ιd(α(X) · ι−1
k (Ag(X)))

= (µ ◦ ιd)(α(X) · ι−1
k (Ag(X)))(Bg(X))

= ((φ 7→ ιk+d ◦ φ ◦ ι−1
k ) ◦ µ)(α(X) · ι−1

k (Ag(X)))(Bg(X))

= (φ 7→ ιk+d ◦ φ ◦ ι−1
k )
(
• 7→ (•) · α(X) · ι−1

k (Ag(X))
)
(Bg(X))

= ιk+d ◦
(
• 7→ (•) · α(X) · ι−1

k (Ag(X))
)
◦ ι−1

k (Bg(X))

= ιk+d

(
ι−1
k (Bg(X)) · α(X) · ι−1

k (Ag(X))
)

= ιk+d

(
ι−1
k (Ag(X)) · α(X) · ι−1

k (Bg(X))
)

= ιk+d ◦
(
• 7→ (•) · α(X) · ι−1

k (Bg(X))
)
◦ ι−1

k (Ag(X))

= Ag(X) · ϕ(Bg(X))

so by symmetriser lemma, ϕ = µ(β(X)) for some β(X) ∈ Rk
g . To check that this corre-

spondence α(X) 7→ β(X) is C−linear we probably just need to show that these T k,d are
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C−subspace and µ−1 : T k,d → Rd−k is C−linear. In summary we get a a new isomorphism
ιd−k : R

d−k
f → Rd−k

g , with a new diagram

Rd−k
f Hom

(
Rk

f , R
d
f

)

Rd−k
g Hom

(
Rk

g , R
d
g

)
ιd−k

µ

µ

φ7→ιd◦φ◦ι−1
k

Iterating this process, for δ = gcd(d, n+ 1) we get an isomorphism

R
(δ)
f ≃ R(δ)

g

which are subrings consisting of degrees divisible by δ. The claim is that for δ < d we can
recover the ring structure on Rf , Rg which gives Jf ≃ Jg. Mather-Yau’s theorem then says
that Yf and Yg are projectively equivalent, and we are done.

Note 3.3. The idea seems to be that for δ < d, Rδ
f ≃ Sδ ≃ Rδ

g. This implies

Sd ≃ Symd/δSδ ≃ Symd/δRδ
f → Rd

f

is surjective with kernel Jf . The map Symd/δSδ → Rd
g with kernel Jg is the same map since

we have identified both Rδ
f , R

δ
g with Sδ and this identification respects multiplication. It

follows that Jf ≃ Jg.
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